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Reduction of metal ions in dilute solutions using a GBC-reactor
Part II: Theoretical model for the hydrogen oxidation in a gas diffusion electrode
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Abstract

The GBC-reactor is based on the combination of a gas diffusion anode and a porous cathode. A theoretical model
for gas diffusion electrode, valid at relatively low current densities, is derived. This is based on the
pseudohomogeneous film model including an approximation of the Volmer—Tafel mechanism for the hydrogen
oxidation kinetics. Results show a severe mass transfer limitation of the hydrogen oxidation reaction inside the
active layer of the gas diffusion electrode, even at low current densities. Empirical formulae are given to estimate
whether leakage of dissolved hydrogen gas into the bulk electrolyte occurs at specific process conditions. A
simplified version of the model, the reactive plane approximation, is presented.

List of symbols R gas constant (8.314 J mol™' K™)
T temperature (K)
ae specific surface area (m”> m™)
Bi, Biot mass number (-): kqn, L/DH,seft Greek symbols
¢ concentration (mol m™>) P electric potential (V)
D diffusion coefficient (m? s™") r fractional conversion
E electrode potential (V) o anodic transfer coefficient
F faradaic constant (96 487 C mol™) € porosity
i reaction current density (A m™2) v, v*  concentration order
io exchange current density (A m™) n electrode overpotential (V)
j current density based on geometric surface area solution conductivity (Q' m™)
(A m™?) A dimensionless penetration depth
Jo exchange current density based on geometric 0 fractional surface coverage of adsorbed hydro-
surface area (A m™>) gen atoms
K1, K2 dimensionless parameters as defined by Equa- ¢ dimensionless distance
tion 28
kq external solution phase mass transfer coefficient  Sub- and superscript
(ms™h) * dimensionless parameter
ktq reaction rate constant dissociation Tafel step [ standard state
(ms™h 0 equilibrium state
ke reaction rate constant recombination Tafel step app apparent
(mol m™2 s71) m matrix/solid phase
kg equilibrium reaction rate constant anodic Vol- macro macroscopic quantity
' mer step (mol m™2 ™) ref reference condition corresponding with equi-
kY o equilibrium reaction rate constant cathodic librium state
' Volmer step (m s™") S solution phase
L thickness of gas diffusion electrode active layer T Tafel reaction
(m) A% Volmer reaction
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1. Introduction

For the reduction of metal ions in dilute solutions a new
type of electrochemical reactor called the ‘gas diffusion
electrode packed bed electrode cell’ (GBC-reactor), was
proposed by Janssen [1, 2]. The reactor consists of a gas
diffusion anode coupled, via direct or indirect contact,
with a porous cathode (e.g., a packed bed electrode [1—
5]). Different reactor configurations and their applica-
tions have been discussed by Portegies Zwart and
Janssen [3]. The working principle of the reactor is
based upon two main reactions: the catalytic oxidation
of hydrogen gas in the gas diffusion anode (Equation 1)
and the simultaneous reduction of metal ions in the
porous cathode (Equation 2): That is,

H, < 2H* + 2¢~ (1)
Mm‘ +ne o M(m—n)+ (2)

When the Gibbs free energy change of these combined
reactions is negative then the oxidative and reduction
processes occur spontaneously, without the need for an
external power supply.

A detailed GBC-reactor model must consider the
behaviour of the gas diffusion electrode. In this work a
theoretical model for the gas diffusion electrode is
described, which is based on a pseudohomogeneous film
model including an approximation of the Volmer—Tafel
mechanism for the hydrogen oxidation reaction. Results
show a severe mass transfer limitation of the hydrogen
oxidation reaction inside the active layer of the gas
diffusion anode even at low current densities. Empirical
formulae were formulated which indicate whether leak-
age of dissolved hydrogen gas into the bulk solution will
occur at specific process conditions. An adapted, sim-
plified version of the model is also presented, indicated
as the reactive plane approximation.

2. Theory
2.1. General considerations and major assumptions

The gas diffusion electrodes used in the GBC-process are
fuel cell grade electrodes [1-6] commonly applied in
phosphoric acid fuel cells (PAFCs). These electrodes
consist of a hydrophobic porous backing for gas
transport and a hydrophilic porous active layer in which
dissolved hydrogen reacts on catalytic sites distributed
over the solid phase.

The fact that in the GBC-process the gas diffusion
electrode is fed with pure hydrogen gas combined with
the expectation that the hydrogen oxidation current
densities will be relatively low during reactor operation,
leads to the conclusion that mass transfer of hydrogen
gas in the porous backing will not be important [3].
Thus, only the behaviour of the active layer needs to be

described. Generally, for the active layer a choice is
made between a version of the so-called agglomerate
model (e.g., [7, 8]) or the pseudohomogeneous film
model (e.g., [9-11]). The agglomerate model uses many
adjustable parameters, which are difficult to determine.
Therefore, the pseudohomogeneous film model is used,
incorporating appropriate hydrogen oxidation kinetics.

The formulated model is presented schematically in
Figure 1. On the liquid side of the gas diffusion electrode
an external mass transfer resistance is considered. At the
gas—liquid interface equilibrium is maintained, due to
the fast mass transfer in the gas phase, and gas and
liquid phase concentrations are linked by the Henry
coefficient. The gas diffusion electrode is operated in a
strongly acidic environment, thus a constant proton
concentration is assumed in all circumstances. Further
important assumptions/conditions are: (i) that the elec-
trode operates in a steady state under isothermal
conditions at 298 K; (ii) that the porosity and specific
surface area of the electrode are uniform; (iii) that the
conductivity of the solid phase is very good, so it is
equipotential; (iv) that the gas feed exists of pure
hydrogen gas at atmospheric pressure; (v) that a high
concentration of acidic electrolyte is used, 1 kmol m™>
of H>SOy4, so ionic migration can be neglected; and
finally (vi) that only lateral gradients exist, so an one-
dimensional model suffices.

2.2. Hydrogen oxidation kinetics

The mechanism of hydrogen oxidation on the platinum
catalysed gas diffusion electrode is described according
to the Volmer—Tafel mechanism [12-14].
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Fig. 1. Schematic presentation of the pseudohomogeneous film model
for the active layer of the gas diffusion electrode, showing the course of
the concentration profile of molecular hydrogen in the gas and liquid
phase.
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v
Vermeijlen et al. [13] showed that the rate determining
step in this mechanism depends on the reactivity of the
gas diffusion anode. The Volmer reaction is rate
controlling in case of high reactivity, the Tafel reaction
in case of low reactivity.

Intermediate reactive anodes will be affected by both
mechanisms. The Tafel and Volmer reaction current
densities are expressed, respectively, as [13, 14]:

cn((mD)
oo (2ol

- (11__000) eXp[—(l—av)%nD (6)

The Tafel and Volmer exchange current density are
given by Equations 7 and 8. The observed reaction
current density is given by Equation 9.

l.(),T = 2Fk’[‘d(1 — 00)20H56f = ZFkTr002 (7)
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Using Equations 59, extended with certain limiting
situations (i.e., Tafel limiting current density, diffusion
limiting current density), it is possible to calculate the
reaction current density as a function of electrode
potential [13]. In this case a modified model, based on
limiting conditions, is used to express the relation
between the reaction current density and the electrode
potential for the Tafel-Volmer mechanism. This means
that either the Tafel or Volmer reaction is the rate
determining step, combined with either a very high or
low fractional surface coverage of adsorbed hydrogen
atoms (0 — 1 or 0 — 0).

2.2.1. Tafel reaction rate determining step

The Volmer reaction is considered to be in quasi-
equilibrium, so from Equation 6 we can derive Equation
10. This expression can be substituted into Equation 5 to
give, after some rearrangement, Equation 11 which can
be linearized for small values of the overpotential to give
Equation 12.

(10)

631

(11)

(10N [2F
PRI T 0, TR

. (1=0\’F
12210"”[17—00 ﬁl’]

Consideration of Equations 12 and 7 reveals that in the
case of a very low fractional surface coverage the current
density will be directly proportional to the dissolved
hydrogen concentration. Otherwise, if the fractional
surface coverage becomes very high then the current
density will become almost independent on the dissolved
hydrogen concentration.

(12)

2.2.2. Volmer reaction rate-determining step

In this case the Tafel reaction is considered to be in
quasi-equilibrium, so from Equation 5 we can derive
Equation 13. Using the latter, Equation 6 can be
transformed to Equation 14, which can be linearized
for small # (Equation 15). So,

0 1-0

0o 1—0,

@)l ol
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As the Tafel reaction is always in quasi-equilibrium we
can also express Equation 7 in a more general form as

12
(%) (CHz)l/z
o) T (16)

1+ (’%)]/2

In the case of a very low fractional surface coverage, the
denominator in Equation 16 is one. Subsequently, the
fractional surface coverage will exhibit a square root
dependency on the dissolved hydrogen concentration.
The dissolved hydrogen concentration has no effect on
the fractional surface coverage if it is already high.

Considering Equations 8, 15 and 16 it can be con-
cluded that in the case of a very low fractional surface
coverage the current density will be proportional to the
square root of the dissolved hydrogen concentration. At
a very high fractional surface coverage the current
density becomes independent of the dissolved hydrogen
concentration.

However, the Volmer exchange current density is
dependent on the dissolved hydrogen concentration by
shifts in the equilibrium potential (Equation 17,
Nernst’s law). Substituting Equation 17 into the anodic
branch of Equation 8 shows this specific concentration
dependency (Equation 18):

(13)

(15)
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Thus, taking this effect into account means that in the
case of a very low fractional surface coverage the current
density will show a concentration dependency equal to
(1-ay)/2. At a very high fractional surface coverage the
current density will show a concentration dependency
equal to —owy/2.

2.2.3. Approximate Volmer—Tafel mechanism

Based on the foregoing analysis an approximate model
to describe the current-potential behaviour is intro-
duced. It follows from Equations 12 and 15 that for low
overpotentials there exists a linear polarization relation-
ship, regardless of the rate determining mechanism.
Therefore, a general linear relationship between the
current and the overpotential is proposed as given by
Equation 19:

(19)

The value of the apparent exchange current density will
be determined by the relative influences of the Tafel and
Volmer reactions (i.e., the reactivity of the electrode).
The influence of the fractional surface coverage of
adsorbed hydrogen atoms is described in terms of a
dissolved hydrogen concentration dependency, as was
analysed in the preceding Sections. This gives four
possible limiting values of y (Table 1).

As a reference equilibrium state in modelling the
behaviour of the active layer of the gas diffusion
electrode, the conditions at the gas—liquid interface are
a logical choice. Because this reference equilibrium state
is fixed, the concentration dependency of the Volmer
exchange current density, due to shifts in the equilibrium
potential, can be cancelled. This gives a different set of
limiting values for y, designated as y* (Table 2). Using
the two extreme values of y*, one and zero, in further
calculations, the whole domain of combinations be-
tween the rate determining step and the fractional
surface coverage is accounted for.

Table 1. Limiting values of the concentration order y for specific
combinations of the rate determining step in the Tafel-Volmer
hydrogen oxidation mechanism and extremes in the fractional surface
coverage of adsorbed hydrogen atoms

Rate determining step Onigh Drow
Tafel mechanism 0 1
Volmer mechanism —ay/2 (1-ay)/2

Table 2. Limiting values of y*, the adjusted concentration order, for
specific combinations of the rate determining step in the Tafel-Volmer
hydrogen oxidation mechanism and extremes in the fractional surface
coverage of adsorbed hydrogen atoms

Rate determining step Onigh Drow
Tafel mechanism 0 1
Volmer mechanism 1 12

2.3. Mass and charge balances

To describe the mass and charge balances over the active
layer, existing theory for the pseudohomogeneous de-
scription of porous electrodes is used [15, 16]. A general
steady-state mass balance describes the changes in the
dissolved hydrogen concentration, taking diffusion to be
the only mass transfer mechanism:

d’cy,  aei
DHZ,efrWZI“* - (20)

~2F
Three additional current densities are introduced: a
solution current density, j,, a solid matrix current
density, j,, and a macroscopic current density, jmacro-
These current densities are defined with respect to the
geometric surface area of the gas diffusion electrode.
The sum of the solution and solid matrix current
densities is equal to the measurable macroscopic current
density, jmacro (Equation 21). As the latter is always
constant it follows that Equation 22 must hold, which is
actually an expression of the electroneutrality condition:

jmacro :jm +js (21)
djm _ djs
o (22)

A charge balance shows that charge leaving the solid
phase must enter the solution phase (Equation 23). The
electric potential in the solution phase will change due to
the passage of current, as is described by Ohm’s law
(Equation 24). Combining Equations 23 and 24 gives a
second order differential equation: a differential charge
balance (Equation 25) [16]:

dis _ dim _

o el (23)
do, Js
= - 24
dx Keff (24)
d’ o, ael
= - 2
dx? Keff ( 5)

2.4. Simulation of active layer behaviour

By substituting the kinetic equation (Equation 19) into
the mass balance and the differential charge balance



(Equations 20 and 25), the behaviour of the active layer
can be simulated. The overpotential in the kinetic
equation is substituted by Equation 26. Because the
hydrogen oxidation takes place at standard conditions
the equilibrium potential will be equal to zero, &, is
arbitrarily set to zero:

n:E_EOZ((Dm_(DS)_EOZ_(Ds (26)

Both the mass balance and the differential charge
balance can be written in dimensionless form (Equations
27-30). Two solutions exist for this system of second
order differential equations depending on the value used
for the concentration order, y*.

CH, F

X % N "
é:z, cHZ:cr_ﬁf’ gpszﬁqjs (27>
2
aciyt (L) acitet (L)’F
KIl= M, K2 = aeliyapp (L) F (28)
2FDw, eficyy, RTKetr
dzc;‘_b . P .
i GO )
d>or L\
deS =K2 (cHz) (DS (30)

For the solution with y* equal to one, the boundary
conditions are postulated in Equations 31 and 32. The
solution phase potential at & = 1 represents the
(externally) applied overpotential which is measured
against a suitable reference electrode placed in the bulk
of the electrolyte solution. This potential is corrected for
the ohmic potential drop between the reference electrode
and the outside surface of the active layer [17]. The

¢Bim

. . KI®;(1)(1 — cosh(vVK2¢))
em(c) =1+ K2cosh(VK2) <

boundary condition for the slope of the concentration
profile at ¢ = 1, which introduces the mass transfer Biot
number, follows from consideration of the external mass
transfer resistance [18]:

dg;

(=022 =0 (31)
* * dc*Hv . *

E=1= & = d(1), 2 = Binciy, (1) (32)

d¢

>>< ko (1
1 + Bip, K2 cosh(vK2)
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The set of equations for y* = 1 cannot be solved
analytically. A numerical finite difference method
(DO2RAF) [19] was used to approximate the solution.
For the solution with y* equal to zero, two solutions are
possible depending on the penetration depth of dis-
solved hydrogen into the active layer of the electrode.
This distinction is analogous to the treatment of
ordinary zero-order chemical reactions in a porous
catalyst [20]. In the case of full penetration, the
boundary conditions are exactly the same as formulated
in Equations 31 and 32. The second solution considers
partial penetration of the active layer, up to a certain
penetration depth 4. The boundary conditions at £ =1
do not longer apply and a new set of boundary
conditions are formulated as given by Equation 33.
The condition for the gradient in the solution phase
potential at ¢ = / follows from consideration of Ohm’s
law for & > J. For ¢ > 1 the reaction current density
will be equal to zero, which means that the solution
current density becomes constant (Equation 23) and the
potential gradient for 4 < & < 1 is linear (Equation 24)
with a slope as given by Equation 33:

do; o (1) — 95(4)
dé 1-2 ’
dc*l_12

d¢

E=1=

(33)

=0, c’ﬁz:O

In both cases of y* equal to zero an analytical solution
for the system of second order differential equations has
been derived (Appendix). The solution phase potential
and the dissolved hydrogen concentration profiles in the
case of a fully penetrated active layer can be described
using Equations 34 and 35.

@ (1) cosh(VK2¢)
cosh(VK2)

Di(¢) =

Kztanh(\/l?z)> - 1)

Biy,

In the case of partial penetration of the active layer
Equations 36 and 37 should be used for 0 < ¢ < A. The
penetration depth at the prevailing process conditions
(i.e., values of KI, K2 and #) can be determined
numerically by solving Equation 38. Thus,

& () — ®: (1) cosh(VK2¢)
) = ok (VEZ) + (1 — 2) /K2 sinb (VEZ)

(36)



634

. K19;(1)(—cosh(vVK2¢)
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: K2cosh(VK22)

K1i®;(1)(—1 — 2v/K2sinh(vK22) + cosh(VK27))
K2cosh (VK22) + (1 — 2)(K2)** sinh (VK22)
(38)

For both values of y*, the macroscopic current density
can be calculated indirectly from the slope of the
solution phase potential at £ =1 using Equation 24
and the fact that j,...o = Js at that point. It is also
possible to determine the macroscopic current density
by numerical integration of the local reaction current
densities over the active layer thickness.

3. Results
3.1. Comparison with experimental data

Simulation results are compared with experimental
polarization curves of electrodes with different reactiv-
ities obtained by Vermeijlen et al. [12, 13]. They con-
cluded that it was possible to fit these data for an
overpotential range of 15 mV to a linear macroscopic
equation (Equation 39). Examples of these polarization
curves, using experimental values of the apparent
exchange current density taken from Vermeijlen et al.
[13], are shown in Figure 2.

. op F
Jmacro = J fpp RT” (39)
500
a
400 ( )

~ i (b)
£200 |
100 (c)

10°n/V

Fig. 2. Polarization curves based on Equation 39 and experimental
apparent exchange current densities determined by Vermeijlen et al.
(Figure 9[13]), corresponding with different electrode reactivities. jo dpp'
(a) 1000, (b) 600 and (c) 200 A m™2.

+ (1 = 2)(K2)** sinh (vVK22)

3.2. Simulation results

The behaviour of the active layer was simulated using
both values of y* and a characteristic set of data for the
process conditions (Table 3). The simulations were
initially performed with a very high Biot mass number,
so the influence of the external mass transfer resistance
was neglected. Both the effective solution conductivity
and the effective dissolved hydrogen diffusion coefficient
were calculated using the Bruggeman equation:

Keff = K83/2, Deff = D83/2 (40)
Experimental results obtained by Vermeijlen [12, 13]
show a strong linear behaviour of the macroscopic
current density as a function of applied overpotential in
the region between 0-100 mV. However, our initial
simulations showed a moderate curvature of the mac-
roscopic current density as a function of applied
overpotential. This effect contributes to underestimation
of the ohmic resistance in the solution phase [23], due to
overestimation of the porosity of the active layer or the
correction of the solution conductivity by the Brugg-
eman equation which is not appropriate in this case.
Nevertheless, acceptable linearity was obtained by using
an estimated porosity of 0.25 combined with the
Bruggeman equation. This value and correction method
were used in further calculations.

In Figure 3 calculated profiles of the macroscopic
current density as a function of the applied overpoten-
tial are shown for different values of electrode reactivity.
The calculated profiles cover the current density range
corresponding with the experimental polarization curves
shown in Figure 2. The profiles of the dissolved hydro-
gen concentration and the solution phase potential at a
very low macroscopic current density and electrode
reactivity are shown in Figure 4. These profiles show
that the activity is mostly located at the gas—liquid
interface.

As the active layer of the gas diffusion electrode will,
usually, be only partly penetrated with dissolved hydro-
gen at realistic operating conditions, external mass
transfer into the bulk of the electrolyte does not need
to be considered.

A critical operating condition is reached when the
active layer becomes just fully penetrated with dissolved
hydrogen. Subsequently, leakage of dissolved hydrogen
gas into the main stream of liquid electrolyte can occur
due to small shifts in the operating regime. Obviously,
the conversion of dissolved hydrogen gas into protons
will then no longer be complete.

The critical operating conditions for both values of y*
have been determined. A critical condition is defined as



Table 3. Characteristic process conditions used in simulating the behaviour of the gas diffusion electrode
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Parameter Value Unit
Active layer thickness 1x107* m
Porosity of active layer 0.25 -
Electrolyte concentration (H,SOy) 1000 mol m™>
Solution conductivity” 40 Q'm™!
Dissolved H, diffusion coefficient 3x107° m>s7!
Hydrogen gas pressure 1 atm
Dissolved H, reference concentration’ 0.67 mol m™?
Biot number 1000 -
Temperature 298 K

“Data from Lobo [21].
"Data from Battino et al. [22].

1

500

Fig. 3. Simulated macroscopic current densities as a function of
externally applied overpotential for y* = 1 (broken lines) and y* = 0
(full lines) and various electrode reactivities. @it : (a) 10", (b) 10",
(c) 10° and (d) 10° A m™.
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from the active layer into the main stream of liquid
electrolyte is just equal to zero. This corresponds to a
100% fractional conversion of hydrogen gas fed to the
reactor. For y* = 0 the critical values of the three
parameters can be determined using Equation 38. The
critical operating condition arises when 4 becomes equal
to one. By specifying two process parameters it is then
possible to calculate the value of the third parameter. In
Figure 5 the results are reported of varying the pro-
cess parameters over a considerable range of values.
Based on these data an empirical formula was fitted by
which the critical operating conditions can be deter-
mined:

1 4
Kl =—|———=5 10048 (41)
TN+ ()
With y* = 1 a critical operating condition arises when

the flux of hydrogen from the active layer is just equal to
zero. However, in the case of a first order concentration
dependency of the reaction rate, the concentration

10°

complete hydrogen

=TT

conversion

-0.15
021 ]
\‘\. I ] ] i 1 100
0.0 ‘ ' —.0.20 3
0.0 0.2 0.4 0.6 0.8 1.0 -
s hydrogen leakage
& 10‘1 Ll ol il ol gl
2 -1 0 1 2 3
Fig. 4. Dissolved hydrogen concentration and solution phase potential 10 10 10 10 10 10
profiles for y* = 1 (broken lines) and y* = 0 (full lines). With jacro = K2
25 Am™ and @it =108 A m™,

the combination of values for K/, K2 and the applied
overpotential for which the flux of dissolved hydrogen

Fig. 5. Combinations of K/, K2 and n for which critical process
conditions arise in the case of y* = 0. Calculated values are given by
dots, drawn lines correspond with Equation 41. #: (a) 0.001, (b) 0.002,
(c) 0.004, (d) 0.008 and (e) 0.032 V.
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can never reach zero. Thus, there is always a flux
of dissolved hydrogen from the active layer. In case of
y* = 1 the definition of the critical operating condition
was therefore modified by stating that it corresponds to
a fractional conversion of dissolved hydrogen just higher
then 99.9%. The fractional conversion of dissolved
hydrogen gas can be calculated from the fluxes at ¢ =0
and & = 1:

I
2 chz

d¢

=l (42)

¢=0

In Figure 6 the critical combinations of parameters are
shown. Also in this case an empirical formula (Equa-
tion 43) has been fitted by which the critical operating
conditions can be estimated. In the calculations a high
Biot number (i.e., 1000) was used. This corresponds to
an extremely high mass transfer rate from the active
layer. For lower Biot numbers, the critical operating
conditions predicted by Equation 43 lead to situations
with a fractional conversion well over 99.9%.

33.6

1
K.

4. Discussion

The derived concentration dependencies of the extreme
situations arising in the Volmer-Tafel mechanism, by
means of y, agree perfectly with the results of theoretical
calculations reported by Vermeijlen et al. (Figure 5 in
[13]). These authors presented calculations for the
concentration dependency of the complete Volmer—
Tafel mechanism, for various combinations of the

10°F
F hydrogen conversion @
104 _ >99.9 % )
- (C)
i GY)

@

hydrogen leakage
]O] Ll ol ol ol gl
102 10" 10 10" 10> 10°
K2

Fig. 6. Combinations of Kl, K2 and n for which critical process
conditions arise in the case of y* = 1. Calculated values are given by
dots, drawn lines correspond with Equation 43. #: (a) 0.001, (b) 0.002,
(c) 0.004, (d) 0.008 and (e) 0.032 V.

reaction rates of both the Tafel and Volmer reaction.
From their graphs, the concentration dependency of the
Volmer—Tafel mechanism in the extreme situations can
be deduced. Our treatment shows that these findings can
be derived from the basic equations.

The error introduced by the linearization procedure
applied in this paper depends on the overpotential range
studied in combination with the reactivity of the gas
diffusion electrode. If the reactivity of the electrode is
low then the Tafel reaction will have a considerable
influence on the oxidation rate. In that case the error is
mostly determined by the linearization of Equation 12,
which grows rapidly with increasing overpotential val-
ues. To keep the error within reasonable margins (i.e.,
less than 30%) the model should in those circumstances
not be used for overpotentials over 10 mV. In case of an
electrode with a high reactivity the Volmer reaction will
be rate determining, so the error will be due to
linearization of Equation 14. The range of application
of the model can then be extended to values of the
overpotential of approximately 40 mV, while maintain-
ing reasonable error margins (i.e., less than 10%).

The estimate of the value of the effective solution
phase conductivity in the active layer of the gas diffusion
electrode by means of the Bruggeman equation can be
considered doubtful. The reason for this is that the
geometry of the active layer can be considered as very
complex in comparison with the dispersions for which
the Bruggeman equation was originally derived [24]. A
more suitable correlation for the effective solution
conductivity, even as an accurate value for the porosity
of the active layer of the gas diffusion electrode, were
not obtained. Determination of these parameters lies
beyond the scope of the present research. Therefore, the
procedure to estimate the effective conductivity in the
active layer on the basis of the shape of the experimental
polarization curves seems justified.

The order of magnitude of the values of the reactivity
parameter, aei{fflpp, necessary to match the simulated
and the experimental polarization curves seems to
comply with other reported values. The value used for
the most reactive electrode, 10'" A m™, agrees perfectly
with the value reported by Bernardi and Verbrugge for a
solid polymer electrolyte fuel cell (SPEFC) anode, for
which they assumed the Volmer reaction step to be rate
determining [11].

Severe mass transfer limitations inside the active layer
have also been reported for other types of gas diffusion
electrodes, concerning the hydrogen oxidation as well as
oxygen reduction [10, 11, 25]. However, in the cases
concerning the hydrogen oxidation, only the Volmer
reaction was taken into account. It has now been shown
that even with a lower reactivity this limitation still
holds, although it must be emphasized that the thickness
of the active layer is of course an important parameter in
that respect. In this work a PAFC type of gas diffusion
electrode was studied with an active layer thickness of
approximately 10™* m. In the case of SPEFC electrodes
this value may be ten times smaller [11], so the relative



penetration depth of dissolved hydrogen at a certain
electrode reactivity, will be much greater.

A decrease in the active layer thickness means a
decrease in the ohmic potential drop in the solution
phase, making the process more energy efficient. How-
ever, in low current density applications of a gas diffusion
anode hydrogen leakage is possible. The analysis of the
critical operating conditions at which dissolved hydrogen
leakage occurs, has resulted in empirical formulae by
which the risk of leakage can be easily assessed.

The observation that current is mainly produced at
the gas—liquid interface justifies further simplification of
the model: the reactive plane approximation. In this
approach mass transfer of dissolved hydrogen into the
active layer is considered to be insignificant and the
entire reaction current is produced at the reactive plane.
There, the dissolved hydrogen concentration will be
equal to the maximum solubility concentration of
hydrogen gas in the electrolyte solution. It should be
noted that similar descriptions have been presented for
gas-liquid absorption systems with fast chemical reac-
tion in the liquid phase [26].

Using the reactive plane approximation it follows
from Equation 19 that the two different values of y* will
give identical results. Thus, the reactivity of the elec-
trode is expressed solely by the value of the apparent
exchange current density, i{fgpp. The apparent exchange
current density, which is based on the true electroactive
surface area, can be substituted by a more accessible
parameter, j{)fgpp, which is based on the geometric
surface area. The value of this parameter is equal to
j{fgpp, and it can be directly obtained from measuring the
macroscopic current density as a function of applied
overpotential (see Equation 39). The gradient of the
solution potential over the active layer will be constant
and is obtained by simple integration of Equation 24
over the active layer thickness and taking j; = jmacro:

A(Ds_/Ld@s_/L_L__jmaLoL
0 0 Keff Keff
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Appendix: Analytical solutions for the concentration
and solution phase potential profiles in the active layer
for y*= 0

Full penetration of active layer
The trial solution for Equation 30 is chosen as

@' = A cosh(VK2¢) + B sinh(VK2¢) (A1)
Differentiating Equation Al and using boundary Equa-
tion 31 gives the value of constant B, which is equal to
zero. Using this value in Equation Al together with the
second boundary condition (Equation 32) gives the
value of A. The final solution for Equation 30 can then
be written as Equation A3.



__ %)

4= cosh(vK2) (A2)
cro DU cosh(v/K2¢)

%) = cosh(vK2) (A3)

Equation A3 can be substituted in Equation 29 to give
Equation A4, which by double integration transforms to
Equation AS.

d’cpy,  KI19;(1) cosh(vVK2¢) (Ad)
e cosh(vVK2)
. o KI®[(1) cosh(VK2¢)

¢y, (&) = 2 cosh(VED) +CIEHC2  (AS)

The second integration constant, C2, follows from
considering boundary Equation 31 and Equation AS.
The first integration constant, C/, follows from Equa-
tion 32 combined with Equations A5, A6 and the
differentiated version of Equation AS.

L KIe()
€2= K2 cosh(\/ﬁ) (A6)
C( Bin \(KI®:() (1
¢l = <1 +Bim> ( K2 (1 cosh(vVK2)
K2 tar;?(x/ﬁ)) - 1) A7)

The final solution can subsequently be expressed by
Equation AS.

K1:(1)(1 — cosh(vVK2¢))
K2 cosh(vK2)

&Bin \ (KI1:(1) !
i (1 +Bim) ( K2 (1 ~ cosh(VK2)

+K2 taz?(@)) B 1)

(6 =1+

(A8)

Partial penetration of active layer

Again a trail solution for Equation 30 is used as given by
Equation Al. The boundary condition given by Equa-
tion 31 also applies in this case, thus constant B is equal
to zero. Using this value in the differentiated version of

cn, (€)

RLAVE cosh(VK2¢) + (& — 2)VK2 sinh(VK27) + cosh(VK27))

Equation Al together with the second boundary condi-
tion, Equation 33, the value of 4 can be determined
(Equation A9). The dimensionless solution potential at A
can be eliminated by substituting Equation A9 into
Equation Al (including B = 0) and solving for ¢ = A.
After some rearrangement the final solution is given by
Equation A10. This solution reduces nicely to Equation
A3 for A = 1.

_ i (1) — Pi(4)
(1= A)VK2 sinh(vVK27)

(A9)

B @:(1) cosh(vVK2¢)
~ cosh(VK2A) + (1 — 2)VK2 sinh(vVK22)
for 0<é<A (A10)

@()

Equation A10 can be substituted in Equation 29 to give
Equation All, which after double integration trans-
forms to Equation A12.

dchy, K197 (1) cosh(vVK2¢)

d&  cosh(VK22) + (1 — 2)vV/K2 sinh(vVK24)
(A11)

¢, (&) =

B KI1®:(1) cosh(vVK2¢)
K2 cosh(VK2) + (1 — 2)(K2)*? sinh(vVK27)
+CIE+C2 (A12)

The first integration constant, C/, follows from consid-
ering the condition for the gradient of the concentration
at 4 (boundary Equation 33), together with the differ-
entiated version of Equation A12:

KI1®:(1) sinh(v/K22)

VK2 cosh(vK27) + (1 — A)K2 sinh(v/K22)
(A13)

Cl=

The second integration constant can be determined by
inserting Equation A13 into Equation A12 and subse-
quently using the condition for the concentration at 4
(boundary Equation 33):

c2=
KI1®:(1) cosh(vVK2.) — AWK2KI1®:(1) sinh(vK27)

VK2 cosh(vVK22) + (1 — 2)(K2)** sinh(vK21)
(A14)

The final solution for 0 < &< 1 can then be expressed as

K2 cosh(VK2A) + (1 — 2)(K2)** sinh(vK24)

(A15)



The penetration depth, 4, is the only unknown left in
Equations A10 and A15. By using boundary Equation
33 together with Equation A15 an algebraic equation is
constructed with only one unknown, the penetration
depth (Equation A16). It can be solved numerically to
give a value for 4.

X

=0
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KI1®:(1)(—1 — 2VK2 sinh(vVK27) + cosh(vVK22))
K2 cosh(vVK22) + (1 — A)(K2)*? sinh(VK22)
(A16)




